Updated date:

How Do Optical Visual Illusions Work?

Author:
This visual illusion was created in photoshop. Built from wooden blocks, two images were combined digitally with crop and curve adjustment layers added to add to the illusion

This visual illusion was created in photoshop. Built from wooden blocks, two images were combined digitally with crop and curve adjustment layers added to add to the illusion

Optical Visual Illusions

When we look at an optical illusion we are viewing a stationary image, a pattern of shapes and lines, colours and contrasts, in a two-dimensional form. However, these images appear to move.

In some illusions, shapes appear to switch dimensions before our eyes. In others where patterns are involved, the more we stare at them the more lines begin to swirl, circles start to rotate and dots seem to shiver and dance.

We know logically this cannot be, but our eyes tell us it can. Exactly how optical visual illusions work is still partly a mystery. However, scientists just love illusions and have been piecing together just what is going on with these illusionary images.

This optical illusion seems to pulsate towards the centre and back outwards again

This optical illusion seems to pulsate towards the centre and back outwards again

How Do Our Eyes See Optical Illusions?

When we stare at an image, that pattern is kept in our retina as an after-image for a short amount of time in case it is needed by the visual system after we have looked away.

Our eyes are always moving and they make regular quick small movements called microsaccades.

It is possible that these microsaccades may be causing this retained image to overlap with the actual image on the page.

When this happens, the lines and boundaries of the shapes and patterns do not match up exactly, therefore what we perceive is an overall image that moves, like ripples in water.

How the images move depends on the shapes and lines within the image. The more high contrast the colours or shades are the stronger this effect will be.

Optical Visual Illusions and Visual Perception

When we look at something, our eyes take in this information into our visual system. This is due to the light reflecting onto the retina, a light sensitive membrane at the back of the eye.

The Human Eye

The Human Eye

  • It is the receptor cells in the retina that translate the light into images
  • The optic nerve can then take this information up into the brain’s visual cortex
  • We detect motion through fast changing light patterns into our eyes
  • The strong contrasts and sharp sudden boundaries between them provide visual information suggesting movement.

The Science of Illusions

Backus and Oruc (2005) suggest neuron firing rate within our brain adjusts once the brain has got used to the stimulus it is receiving. Neural activity for high contrasting regions adapt faster than for a low contrasting regions.

This results in the firing rate of neurons slowing down much quicker in response to the high contrasting areas within an image. This change in activity as the eye moves over the different regions may be detected by motion sensors within the primary visual cortex giving rise to the perception of movement within the image, even though it is not actually moving.

The Rotating Snakes Optical Visual Illusion

The original "Rotating Snakes" optical illusion was created by Akiyoshi Kitaoka in 2003.

The original "Rotating Snakes" optical illusion was created by Akiyoshi Kitaoka in 2003.

Can you see the 'snakes' rotating?

“Rotating Snakes” is one of the best and most well-known optical illusions available.

For most people, when looking at the rotating snakes image, sections appear to move in a circular motion, similar to disks slowly turning or rotating.

If you look around the image, the snakes continue to rotate. However, if you fixate on one section of the image, after around 5 seconds, the motion stops and the image appears stationary again.

This suggests that eye movements are an important part of how this illusion works. Certainly the more you look away or to the side of the image and back again, the more movement appears within the image.

Illusions: What if they don't move?

There are some people who do not see any movement within this illusion and others like it.

This is not unusual and has been demonstrated in many of the scientific studies which have been carried out into such illusions.

  • Fraser and Wilcox (1979) tested 678 participants using their staircase illusion and 28% reported no movement within the image
  • Faubert and Herbet (1999) tested five participants using their adapted staircase illusion and half reported seeing no movement
Faubert & Herbert (1999) coined the term 'peripheral drift' to describe these types of visual illusions.

Faubert & Herbert (1999) coined the term 'peripheral drift' to describe these types of visual illusions.

The repeated sequence of colour blocks can be seen making up each circular section within the illusion.

The repeated sequence of colour blocks can be seen making up each circular section within the illusion.

How do Optical Visual Illusions Work? – Patterns Within The Image

The “Rotating Snakes” illusion is made up of small blocks of colour arranged in multiple overlapping circular rings.

The patterns and shades of colour used have been shown to be crucial to how we perceive these images as moving.

The sequence of colour used in the original image is Black-Blue-White-Green. This sequence repeats in a pattern around each circular snake ring in an anti-clockwise direction (right to left) making up the image.

The direction of repeating contrasting colour blocks is important for the illusion to work

The direction of repeating contrasting colour blocks is important for the illusion to work

How do Optical Visual Illusions Work? - Directional Rotation

What is also unique about the "Rotating Snakes " illusion is that the rings all rotate as complete circles and not individual sections of the rings moving separately.

According to Backrus and Oruc (2005), the visual system has sensors which operate in the background and seek out larger pattern areas of movement within the image. Therefore, multiple small areas within the ring that are seen as movement can be perceived collectively giving the impression of the entire ring (or ‘snake’) moving in one piece.

It is important that the contrast sequence is in the same direction throughout the ring. For example, in the colour version, if the contrast sequence is a repeated pattern of Black-Blue-White-Green from left to right throughout, this is the direction the ring will be perceived to move. If however, some of ring has this sequence but some has the sequence in the opposite direction, there will be very little perceived motion at all.

Colour vs Grey-Scale in Illusions

The colours themselves are not the important factor giving the perception of motion. A grey-scale version of the image also gives a sense of movement with the same properties however, the illusion may not be perceived as strongly.

Conway et al (2005) conducted the first full scale study on the influence of colour and strength of such illusions and found no significant effect. It appears therefore that it is the shading and direction of shading that is important within the repeating sequence and not the actual colours.

Rotating circles optical illusion using high contrast black-grey-white colour blocks

Rotating circles optical illusion using high contrast black-grey-white colour blocks

How Do Optical Visual Illusions Work? - Contrast

Contrast appears to be more significant in the perception of motion within the image than colour.

No one really knows why a grey-scale version of an illusion is not as strong as a colour version. Backus and Oruc (2005) highlight in the Rotating Snakes illusion, that black against white would be high contrasting, generating a higher level of neuron activity within the visual cortex, compared to the low contrasting areas of blue and green.

They suggest this adaptation of the neuron firing rate may be involved, where the firing rate does not slow down as fast for grey-scale regions as it does for colour regions resulting in a less powerful illusion.

Swirling lines optical illusion from a centre eye

Swirling lines optical illusion from a centre eye

Eye Movement Saccades and the Rotating Snakes Illusion

Otero-Millan et al (2012) studied the "Rotating Snakes" illusion and found a strong relationship between when subjects perceived the illusion to start to move and micro-saccades, our involuntary small and fast eye movements.

  • Eight subjects eye movements were monitored
  • Subjective reports were collected of when they saw the image move and when they didn't through button presses
  • The researchers found that just before subjects reported movement within the image, blinks and micro-saccades were detected via eye tracking
  • Just before they reported the snakes stopped moving, their eye movements were stationary on one area
Colour versus grey-scale circle optical illusion

Colour versus grey-scale circle optical illusion

The purpose of these rapid eye movements appear to be to ensure we obtain refreshed data from the image at a constant level even when we have consciously chosen to fixate on one part of the image.

Generally our brain is able to distinguish between things that are actually moving in the real-world and a perception of movement due to the movement of our eyes.

On a basic level the boundaries between regions of colour within these illusions are strong and the shapes are repetitive which confuses this system, activating motion sensors within the visual cortex and movement of the image is perceived when it is not really moving.

Optical Illusion of moving dots in a swirl pattern

Optical Illusion of moving dots in a swirl pattern

Illusions and Our Brain

Optical illusions are an area that we may never fully understand. The "Rotating Snakes" illusion is a strong example of how our visual system confuses what it is really seeing with internal representations, most probably as part of our visual processing networks.

Our visual system, neural activity and internal representations are complex. While patterns, colours and contrasts appear to be very important in how optical illusions work, there are still many questions unanswered.

Such mystery does serve to add to the interest within visual illusions and in the meantime, while researchers continue with the science, we can enjoy the magic and marvel at the ever increasing examples of optical illusions that are now being produced.

© 2014 Fiona Guy

Comments

Fiona Guy (author) from UK on July 04, 2015:

Thank you Education fundoos, I really enjoyed putting this Hub together and find how illusions work and what our eyes perceive really quite fascinating.

Education fundoos on July 03, 2015:

Great article and very interesting illusion images...

Fiona Guy (author) from UK on May 31, 2015:

Thank you NeeleshG, I am glad you enjoyed the Hub! You make a very good point, our perception has everything to do with what we believe and not just simply what we see. Our brains and minds really are quite remarkable!

Neelesh Ghodake from India on May 30, 2015:

Really Great Hub! informative with great illusion examples too.

i am also a lover an collector of illusion images. i keep it as "what you SEE is not what you believe, but what you BELIEVE is what you see." ... Check an correct your beliefs it will change your world!

Fiona Guy (author) from UK on January 16, 2015:

Hi Billybuc, thanks for reading and commenting! I am glad you enjoyed the article. The main reason I put it together was to meet my curiosity into how they worked and why I could see some stronger than others and some not move at all!

Bill Holland from Olympia, WA on January 15, 2015:

That was really fascinating. I've always loved those illusions, but I never knew what caused them. Thanks for a great article.

Fiona Guy (author) from UK on December 22, 2014:

Hi Catherine, thank you for reading and commenting! It is really interesting how people can see these differently, but I suppose even though our fundamental visual systems are the same they all operate slightly differently which probably accounts for it. Glad you enjoyed the Hub and thank you for the vote and share!

Catherine Giordano from Orlando Florida on December 22, 2014:

I think optical illusions are cool. Thanks for explaining them. I couldn't see all of them tho. You did a great job with this. Voted up and sharing.

Fiona Guy (author) from UK on December 21, 2014:

Thank you heidithorne for such kind comments and vote and share! I'm really glad you enjoyed the hub, it was a fun one to do!

Heidi Thorne from Chicago Area on December 21, 2014:

Wow, what an interesting and fun hub! Great examples. Voted up, beautiful, interesting and sharing!