# Math

## Optimization Bayesian Inversion Using Markov Chain Quasi-Monte Carlo Sampling on Amplitude.

Bayesian optimization is minimizing the number of performed evolutions as well as to optimize complicated and expensive functions. In this article we will learn the definition and applications of Bayesian optimization.

## What are Transcendental Functions?

Transcendental functions are the most important topic of calculus. Here we will learn definition, examples and graphical behavior of some transcendental functions.

## Applications of Ring Theory

Ring theory is important sufficiently that it is also essential in many applications of mathematics. Here we will learn the apploications of ring theory.

## Trigonometric Functions

The most significant mathematical functions are trigonometric functions. We will learn about its definition, key formulas, and relevant formulas and examples for trigonometric functions and their graphs.

## Techniques Are Used to Find the Indeterminate Form.

Methods for Find the problems of Indeterminate form are used in mathematics to vanish the 7 indeterminate form.

## Method of Rationalization

Method of rationalization is used to solve the difficult questions. This method is used to solve the indeterminate form.

## Method of Factorization to Solve the Equations.

Factorization method for solve the equations is an important method used in every field.

## The mathematics of 'About, Face! '

You don't ignore an army Drill Sergeant when he yells, 'About, Face!' to nervous recruits. But how many times will he have to bark orders if not all recruits are asked to do what he says at the same time. This poses an interesting problem in mathematics which we will explore.

## Indertiminate Forms

Indeterminate forms of limit are most important topic of calculus. There are seven indeterminate forms.

## L’Hospital’s Rule in Calculus

The L'Hospital's rule is the most famous mathematical tool among students because of its effectiveness and simplicity. By L'Hospital's rule we can solve the intermediate forms like 0/0 or ∞/∞ etc.

## Infinite Limits in Calculus

Infinite limits are advanced topic of calculus. It has much importance in every branch of mathematics.

## Concept of Infinity in Mathematics

Infinity is most important term which is used in every field of life as well as every field of science and arts. Everything which is unbounded refer to infinity.

## Continuity and Continuous of a Function in Mathematics.

Continuous of a function is an important topic of calculus. By continuity we can determine the continuity and discontinuity of any function.

## Sandwich Theorem in Mathematics.

Sandwich theorem is a most important theorem of limit. By Sandwich theorem we can comparison of limit of one function to the other function. By sandwich theorem we can find the limit of trigonometric function. Iff three functions are given then find out its limit by sandwich theorem.

## What is Zero Power Zero?

We know that every non-zero real number raised to a power exists, but what happens if both the base and the power are zero? Is the answer 0, 1, or something else? We will examine this situation in some detail.

## Limit of a Function in Mathematics.

Limits plays an important part in calculus as well as in our daily life. The concept of continuity, derivative and integral is based on limits. It is a most basic concept of calculus.

## Relation between Coefficients and Roots of Quadratic Equations.

Quadratic equations play an important part in every field of life. By Quadratic formula we can satisfy the equation and it tells us weather our solution is wrong or correct. There is basic three methods of solve the roots of quadratic equations by which we can easily solve any quadratic equation.

## The Importance of the Word of God

The word of God is extremely powerful, vigorously alive and gives life. Every one needs to word of God in this world.

## Why Is Prasanta Chandra Mahalanobis Is Regarded as the Father of Indian Statistics

Prasanta Chandra Mahalanobis is celebrated as the father of Indian statistics for his significant contributions to the field. His work in the Indian National Sample Survey has been recognized as a major milestone in the development of statistics in India.

## Logic and Intuition: Features, Stages of Our Thinking

It says about two opposite sides of our thinking- logical and intuitive. Author analyzes the pluses and minuses of this processus

## Logic of the Port Royal

It says about one of the most famous textbook on Logic-Logic of Port Royal. The author shows connections and interconnection between linguistic science and Logic.

## Logic of Confucius in the Philosophy of Ancient China

Author tries to show the contribution of Ancient China in the development of common logic using parallels with similar processes in Western philosophy,

## Logic in Prehistoric Times

Author pays attention to a very specific type of logic. It saysc about logic in thinking of the prehistoric man. He uses achievements of linguistics, anthropology, and ethnology in learning this interesting phenomenon of human mind

## 7 Apps Very Similar to Photomath, Which Solves Mathematics Questions

It is a dream for every high school, secondary school or college students to be a top performer in every subject or course he/she is taking. Even though this is the case, it is not possible for everyone to be very fine when it comes to performing well in school in all subjects or courses.

## Portmanteau Test Statistic: Test the Adequacy of a Fitted Model

Portmanteau Test Statistic has its own significant place as a model selection criterion in the literature of the time series modelling and forecasting. It tests the overall randomness of the residuals rather than testing the randomness at each individual and distinctive lag.

## Teach Abacus Training, This Is Very Special for Your Kids. Whatever Benefits This?

The UCMAS Mental Arithmetic System is a modern take on an ancient mental math system. It makes use of an ancient tool called the abacus for right cognitive development, which helps to improve speed, accuracy, learning capacity, focus, sensory capability, memory, and academic achievement.

## Basic Statistical Concepts

Statistics is defined as the science of learning from data, and of measuring, controlling, and communicating uncertainty; and it thereby provides the navigation essential for controlling the course of scientific and societal advance.

## I Know Nothing About Algebra, How Do I Help My Teen?

Many feel that Algebra and advanced mathematics is either a waste of time, or just flat out impossible. As a Algebra Teacher, I can tell you, neither case is true. It is true that many will never use advanced math past school, but the courses teach critical thinking which is always an asset.

## Why Should I Love Math?

This is a very popular section in the AI writing section. This section answers the question - why should I love math? and gives you some statistics on how many people around the world are in love with math. — The reason why I love math is that it is the most beautiful language in the world. It is

## Exponential Notation

Exponent tells us how many times we will multiply a number to itself. For example, if we have, 52 , 5 is called the base, and 2 is the exponent (also referred to as power or index). Base is the number multiplied by itself repeatedly (as indicated by exponent).

## Numbers and Number Sense: Order of Operations

GEMDAS is an acronym for grouping symbols, exponents, multiplication, division, addition and subtraction. This tells us that whenever we perform operations on a given mathematical expression, we follow this order or sequence.

## Math's Uses in Real LIfe

Mathematics surrounds us and you may not pay attention to it. Math in class may seem dry and boring, but in the real world it is part of our daily lives. Math is a medium that ought to be embraced by everybody in the entirety of our different backgrounds.

## Pythagorean and Almost Pythagorean Triples

Pythagoras Theorem, known millennia before his birth, has links to geometry, algebra and number theory

## Some Thoughts on the Collatz Conjecture Including Its Implications for Philosophy

In 1937 Lothar Collatz posed what may be the simplest unsolved problem in mathematics. Mathematicians have, ever since, had to resist engaging with this vampire problem, which may stop them doing meaningful work ever again.

## Multiplying 2 Digits Numbers Times Another Number the Easy Way

Was kind of testing this method of multiplying... and I was surprised myself

## At-Home Opportunities to Teach Math

Math is a fundamental ability that will be utilized for your youngster's whole life. There is no getting away from it. Without math, your youngster would have a startling future and not be able to do basic errands, for example, heat treats and gap medication measurements accurately. The following ar

## Something About Fields

Presents a lecture on fields, a segment of Abstract Algebra

## Something About Group Theory

Presents a lecture on Groups, a segment of Abstract Algebra.

## Voronoi's Diagrams in the Natural Science and Art

The author shows connection between exact disciplines and the art of lines. The bright example of this application is the creative activities of the mathematician Georgy Voronoi related to the notion Diagram

## Locally Weighted Regression(lowess)

This article will explain the concept of locally weighted regression, which is a type of linear regression. We use linear regression in cases where the dataset is linearly correlated and is not suitable for non-linear datasets. For non-linear datasets, a concept of LOWESS is introduced.