# Types of Fluids

*He is a writer on youths, challenges, engineering, computer and insurance. He is certified by Young African Leaders Initiative on Workforce.*

## Classifications of Fluid

## What are types of Fluids?

Of what types/classifications are fluids in science and engineering study? What do you think is the definition of fluid? Fluids can be defined as substances that flow or deform under the application of shear stress, and these include liquids and gases. They are part of engineering study in many tertiary institutions of the world. Basically, in the study of science, fluids are divided into two broad groups. These divisions in this write-up are known as types of fluids which are Newtonian and non- Newtonian fluids. Newtonian fluids are those fluids that obey Newton Law of viscosity. Non-Newtonian fluids are the opposite of Newtonian fluid in the sense that they do not obey Newton Law of viscosity. Non-Newtonian fluids in this text are sub-divided into time-independent, time-dependent and elasticoviscous or viscoelastic fluids.

## Newtonian Fluids

**What are Newtonian fluids **

Newtonian fluids as written in the introductory part of this text are those fluids that concur (agree) with the Newton Law of viscosity. Viscosity is the opposition to the flow of fluids and it is measured in force per unit area of the fluid. The generally accepted unit of viscosity is Newton per meter square (NM^{-2}). This is known as the SI unit of viscosity which is the same with that of stress. Mathematically, viscosity is expressed as Force per unit area or simply F**̸̸**A. Newton law of viscosity states that the shear stress on a fluid element layer is directly proportional to the rate of shear strain. In Newtonian fluids, coefficient of viscosity does not change with the rate of deformation of the fluid. Examples of Newtonian fluids are: water, kerosene and air.It is shown mathematically as:

τ = ηγ; where τ = shear stress, η and γ are coefficient of viscosity and share strain respectively.

## Non- Newtonian Fluids

**What are Non-Newtonian fluids and their classifications? **

Non-Newtonian fluids are those fluids that do not obey Newton’s Law. They are the opposite of Newtonian fluids. Examples of non-Newtonian fluids are colloids, emulsions, pastes, sols, gels, thick slurry, latex-based paints, and Biological fluids. Note that non-Newtonian fluids are many but these are few examples given. Non-Newtonian fluids do not exhibit the property of Newtonian fluids where shear stress is directly proportional to shear rate.

There are three broad classifications of non-Newtonian fluids. These three classifications are time-independent, time-dependent and viscoelastic fluids. The viscoelastic fluids can also be called elasticoviscous fluids. One should not be confused because some textbooks relating to fluids may only one of these two names. Notwithstanding the three broad classifications of non-Newtonian fluids, there are also some other divisions of the three.

**Time-Independent Fluids**

As the name sounds, time-independent fluids are those non-Newtonian fluids that do not depend on time. They are those fluids in which the shear rate at a given point is a function of stress at that point only. Examples of time-independent fluids are Casson, Bingham, Dilatent and Pseudoplastic fluid.

The Bingham fluid as an example of time-independent fluid does not flow at all until the shear stress exceeds certain critical value called yield stress. In this fluid, the flow behaviors appear like that of Newtonian once the system begins to flow. There is an internal structure in this type of fluid which breaks down before the flow of the fluid can start. Notable examples of Bingham fluids are tomato puree, wood pulp suspensions, butter, drilling mud, and toothpaste. When an equation is used to represent Bingham fluid, it is represented as:

**τ = τ _{y + }ƞγ**, where

**τ**is yield stress.

_{y }Casson fluids also require a critical shear stress to overcome before flow can occur in the system. The type of flow in this type of time-independent fluid is non-Newtonian, non-linear and parabolic in shape. Casson and Bingham's fluids are called plastic fluids.

Dilatent and Pseudoplastic fluids exhibit different characters on their own. Dilatent fluid is also called shear thickening fluid. Dilatant fluid becomes more viscous as the shear stress increases. The shear stress increases much more rapidly than the shear rate in this kind of fluid. Examples of dilatent fluids are a slurry and highly concentrated suspensions, like, Poly Vinyl Chloride. Pseudoplastic fluid is opposite to Dilatent fluid because the share rate increases much more rapidly than the shear stress. It is known as shear thinning fluid. As the shear stress increases, the pseudoplastic fluid becomes less viscous.

**Time-Dependent Fluids**

Time-dependent fluids are fluids whose shear rate is a function of shear stress and time. In this type of non-Newtonian fluid, the property of the fluid flow such as apparent viscosity changes with time. It is further classified into the **thixotropic** and **rheopectic** fluid. In relation of thixotropic with rheopectic fluids, if the shear stress and shear strain relationship are observed with increasing shear rate, both sets of data do not coincide. This results in a formation of the hysteresis loop. In** **thixotropic and rheopectic fluids, at a given shear rate; there are two apparent viscosities depending on when the readings were taken. The difference between the two is that thixotropic fluid becomes less viscous on an application of stress while rheopectic fluid becomes more viscous on an application of stress.

**Elasticoviscous Fluids**

Fluids that are predominantly viscous but show partial elastic recovery after deformation are termed elasticoviscous fluids. Examples of such fluids are multi-grade oils, polymer melts, and liquid detergents. The term viscoelastic fluid is also used in place of elasticoviscous fluids as the former denotes solids with viscous properties while the later (elasticoviscous) denotes fluids that possess elastic property.

## Conclusion and References

**Conclusion**

Fluid is an important area of study in engineering. We meet fluids every day but we are ignorant of the fact that their types differ. This article is purely written for an academic purpose. In summary, this write-up has dealt seriously with types of fluids based on science and engineering study. Fluids cannot be done without in our everyday life and this is one of the reasons that makes scientists show more interesting in categorizing them and for more in-depth study of their flow. One of the basic types of food which people neglect is fluid. Do you know what that important fluid is? It is no other thing but the water we drink on our daily basis and I do not think you can do without it. Gasoline is another basic fluid used in automobiles and this is of great help to man. We cannot be able to power or motors on without this energy supplier. So, respect is to be given to fluids as they contribute to both technological and human development. Fluids were categorized broadly as Newtonian and Newtonian fluids. The non-Newtonian fluids were further divided into other classes and explained in sub-headings.

**References **

- Fluid Mechanics by R.K Rajput;

- Introduction to Polymer Technology by Dr. E. M. Katchy.

## Quiz

For each question, choose the best answer. The answer key is below.

**Hope the write-up makes sense**- Yes
- No

**How helpful is the information?**- Much okay
- Not well explained

### Answer Key

- Yes
- Much okay

## Buy this textbook by clicking on it for further reading on this topic

*This content is accurate and true to the best of the author’s knowledge and is not meant to substitute for formal and individualized advice from a qualified professional.*

**© 2013 Okwuagbala Uzochukwu Mike P**