Skip to main content

21 Ways Archaeologists Date Ancient Artifacts

Excavation site at Gran Dolina in Spain

Excavation site at Gran Dolina in Spain

In archaeology, timing is everything

In times past, things that appeared old were simply considered old, maybe as old as the story of Atlantis, the biblical flood or the earth itself, but nobody knew for certain how old anything was. It wasn’t until the late nineteenth century that archaeologists began using dating techniques, specifically those labeled as relative dating, which began to provide an acceptable degree of accuracy for dating old things.

Then in the early twentieth century scientists began using absolute dating techniques, perhaps the most prominent of which is carbon-14. It would be hard to imagine modern archaeology without this elegant and precise dating method. Now using carbon-14 and other modern dating techniques we have a very good idea how old things are.

The following is a list of dating techniques used in archaeology and other sciences. It is written mostly in the order each method was introduced.

Please keep reading!

Harris matrix used for excavations

Harris matrix used for excavations

Archaeological site of Hisarlik (Troy) in  northwesternTurkey

Archaeological site of Hisarlik (Troy) in northwesternTurkey

Rock paintings at Chauvet Cave in France

Rock paintings at Chauvet Cave in France

Bedrock milling holes at Sutter Buttes north of Sacramento, California

Bedrock milling holes at Sutter Buttes north of Sacramento, California

Pictograph found at Sutter Buttes

Pictograph found at Sutter Buttes

1. Stratigraphy

Stratigraphy is the most basic and intuitive dating technique and is therefore also the oldest of the relative dating techniques. Based on the law of Superposition, stratigraphy states that lower layers should be older than layers closer to the surface, and in the world of archaeology this is generally the case, unless some natural or manmade event has literally mixed up the layers in some fashion. Most archaeological sites consist of a kind of layer cake of strata, so figuring out how old each layer is comprises the basis for the dating of the site itself and also helps date the artifacts found within these layers as well.

For instance, the site of Hisarlik in western Turkey comprises a manmade earthen mound, also known to archaeologists as a tell, which is covered by of nine layers of strata, the lowest of which appears to be the oldest. Interestingly, Hisarlik could be the site of Homeric Troy (circa 1300 B.C.E.), though this possibility has not been conclusively proven.

2. Seriation or Artifact Sequencing

Invented by preeminent archaeologist Sir William Flinders-Petrie in the late nineteenth century, seriation, another form of relative dating, is based on the idea that over time artifacts such as gravestones and ceramics undergo changes in style, characteristics and use. Seriation is particularly useful when layers of strata are not available, such as at ancient cemeteries.

3. Chronological Markers

The first and simplest method of absolute dating, chronological markers pertain to artifacts with dates inscribed upon them, such as coins, documents or inscriptions on buildings announcing historical events. Roman coins are excellent for this usage, as they often show dates, as well as the likeness of the emperor in power when the coins were minted. The only problem with this dating method is that when these markers are discovered out of context, their value is greatly diminished.

4. Dendrochronology

Scroll to Continue

Dendrochronology or tree-ring dating was developed in the early 1900s by Tucson astronomer A. E. Douglass, who hypothesized that the growth rings in trees are influenced by solar flares and sunspot activity. This theory turned out to be true, of course, because solar activity affects virtually every living thing on the planet. These growth rings can be used to date slices of wood or logs, sometimes to the exact calendar year. Douglass’ research led to the dating of Native American puebloan ruins through the American Southwest.

The limitation with this method is that growth rings only pertain to the climate in a particular region; thus, comparing growth rings from different areas is often useless. Also, some trees show no growth rings. Nevertheless, the International Tree Ring Database has contributions from 21 countries, providing researchers with comparative regional data.

5. Radiocarbon or Carbon-14 Dating

The development of radiocarbon dating in the 1940s started a scientific revolution. The scientific basis of radiocarbon dating is that every living organism contains carbon and absorbs the radioactive isotope carbon-14 (C14) from the atmosphere during its life cycle. (C14 forms by the bombardment of cosmic rays from space.) When the organism dies, the C14 begins to decay at a rate that appears constant. The half-life of this decay is about 5,730 years. Thus the age of the organism when it died can be calculated with great accuracy. This dating method remains accurate for about 57,000 years.

The limitations to radiocarbon dating is that the ratio of C14 to other carbon isotopes such as C13 doesn’t remain constant, as the amount of cosmic radiation hitting the earth can vary over time. Also, since the advent of the Industrial Revolution, the amount of carbon spewed into the atmosphere has increased dramatically. More carbon, means more C-14. Therefore, refinements and calibrations of the technique are a constant concern.

6. Potassium-Argon

Potassium-argon dating, like radiocarbon dating, involves the decay of radioactive elements in a sample. It is based on the decay of an isotope in potassium which then forms the element argon. Potassium is found in material such as micas, clay minerals, tephra and evaporates. Moreover, since argon is a noble gas it doesn’t bind with other elements once it is formed, so measuring the amount of it is straightforward.

Potassium-argon dating is mostly limited to dating volcanic materials at sites between 50,000 and two billion years old. This technique has been used greatly at Olduvai Gorge in Africa, helping date the hominid fossils found there. A recent modification is argon-argon dating, which has been used at sites such as Pompeii.

7. Uranium-Lead

One of the oldest and most reliable radiometric dating methods, uranium-lead dating is used to date rocks from one million years to 4.5 billion years old, essentially as old as the earth itself. Working best with rocks containing the mineral zircon or zirconium silicate, which is often used as a substitute for diamond, this method measures the level of lead in the zircon, as its uranium and thorium atoms shed alpha and beta particles and thereby decay into lead. In fact, any lead found in zircon is a product of radiometric decay.

Lead-lead dating is another method that can be used; it measures the level of isotopes in lead, the measurements of which can be used for dating very old rocks.

8. Fission Track

Fission track dating was developed in the mid 1960s. This method is based on the knowledge that damage tracks in minerals and glasses are created when small amounts of uranium are present in a sample. Such damage tracks are accumulated at a fixed rate that can be measured. This dating method has been used at hominid fossil sites such as Zhoukoudian in China, where Peking Man - later labeled as a specimen of Homo erectus - was discovered in the 1920s.

9. Obsidian Hydration

Obsidian is a volcanic glass used by early ancestors of man primarily during the Paleolithic era. Once obsidian is exposed to the air, such as after it was used to make spear points, arrowheads or knives, it begins to absorb water. The resultant rim or rind can be measured using many different techniques such as microscopic depth profiling or, the most sensitive of the options, secondary ion mass spectrometry. Thus, the larger the rind, the longer the artifact has been exposed to the air.

Unfortunately, some factors can change the hydration rate of an obsidian artifact. The higher temperatures experienced at lower elevations, differences in water vapor pressure, and the intrinsic qualities of various obsidian samples can alter the hydration rate.

10. Thermoluminescence

Thermoluminescence (TL) is used for dating inorganic material, particularly pottery or other ceramics, hallmarks of ancient civilization from Mesopotamia to the Americas. TL can also be used to date sediments. Invented by physicists around 1960, TL operates on the principle that when ceramics are heated, electrons are trapped in the minerals of the material. When this material is then re-heated in the laboratory the electrons in the minerals emit light or luminesce. This light is then measured to find the date the ceramic was fired (or when sediment was exposed to sunlight). The effectiveness of TL is from 300 to 100,000 years.

Unfortunately, this dating technique is not infallible. If a particular pottery vessel has been subjected to heat more than once, the resultant TL data can be inaccurate.

Winged bull deity found at the archaeological site of Nineveh in Iraq

Winged bull deity found at the archaeological site of Nineveh in Iraq

Cementum deposits on the root of a tooth

Cementum deposits on the root of a tooth

Archaeologists hard at work

Archaeologists hard at work

11. Optically Stimulated Luminescence

Optically stimulated luminescence (OSL) measures the complex process when minerals in sediments are exposed to sunlight, which frees electrons trapped within the mineral lattice. When the amount of electrons is measured, dating is accomplished. This method primarily dates sediments containing minerals such as quartz, feldspar and calcite. OSL is often used in conjunction with thermoluminescence.

12. Rehydroxylation

Like thermoluminescence, rehydroxylation (RHX) is used to date ceramics. According to scientific observation, once a ceramic is fired it immediately begins to absorb moisture from the atmosphere at a measurable rate – the fourth root of the time elapsed since firing, actually. To test a sample, it is weighed and then heated to 500 degrees Celsius until it is completely dehydrated. Then the amount of water loss can be measured, showing the age of the ceramic.

The drawback to RHX is that scientists need to know the temperature history of the site where the ceramic is found. Also, natural events such as wild fires could completely dehydrate a sample, thereby resetting its clock.

13. Paleomagnetism

Paleomagnetism (PM) is the study of the magnetic history of rock samples. Over time, the location of the earth’s north magnetic pole shifts position; also, the poles can reverse entirely from time to time. This magnetic orientation through millennia can be measured in rocks. Interestingly, studies using PM led to the discovery of continental drift, which validated the theory of plate tectonics - and the resultant revolution in geophysical studies hasn’t let up!

14. Magnetic Properties of Lead

Lead is another element that tends to absorb water and oxygen from the atmosphere over time. When a sample of lead is subjected to cryogenic temperatures it becomes a superconductor, but its level of corrosion from water and oxygen cause it to lose some of its superconductivity. This difference in conductivity can be measured with some accuracy. Dating lead is useful to archaeologists because it was widely used in antiquity, particularly in places such as ancient Israel and the Roman Empire.

15. Amino Acid Dating

Also known as racemization dating, amino acid dating relies on the principle that all biological tissues contain amino acids. These amino acids have two different configurations “D” or “L.” With few exceptions, all living organisms contain the L configuration. But after the organism dies, the ratio of D to L tends to even out over time, a process known as racemization, and this tendency toward equilibrium can be measured.

However, racemization tends to happen more quickly in warm, wet climates, so knowing the climate history of the area where the artifacts were found is a critical issue. Acidity and alkalinity can also affect racemization. Amino acid dating is accurate from 5,000 to one million years ago.

16. Oxidized Carbon Ratio

Oxidized carbon ratio (OCR) dating is used to date organic material going back 35,000 thousand years. This dating method is based on the measurable difference between oxidizable and organic carbon. Over time carbon tends to oxidize with exposure to the atmosphere. Dating is achieved by measuring the difference between the oxidizable and organic carbon.

Please be advised that the OCR method is considered experimental and is therefore subject to further testing, evaluation and refinement. Of course, this could be said of many dating methods! At present, most scientists opt for C-14 dating instead.

17. Tephrochronology

Tephrochronology (TC) is a geochronological dating technique that relies on the fact that every eruption of volcanic ash – or tephra – has a unique chemical fingerprint, establishing a “tephra horizon” that is easily dated. The advantage to such dating is that layers of volcanic ash are easy to spot and spread over a wide area. The device used to read the chemical composition of the tephra is an electron microprobe.

The limitation of TC is that tephra chemistry, especially that of basaltic tephra, can be altered over time. This technique has been used at Mt. Vesuvius in Italy and the island of Santorini near Crete, where a volcanic eruption in 1650 B.C.E. may have ended the great Minoan civilization.

18. Oxygen Isotope Chronostratigraphy

Oxygen isotope chronostratigraphy relies on the fact that oxygen has three different stable isotopes, the ratio of which changes over time and therefore can be dated in the rocks present in any particular area. This ratio changes during long cold or warm periods of time, helping scientists learn more about the climate in which people may have lived.

19. Uranium-Thorium Dating

Uranium and thorium are radioactive elements that accumulate in some rock formations. Uranium has a half-life of billions of years, while thorium’s is only 75,000 years. Scientists use a mass spectrometer to measure the ratio between uranium-238 and thorium-230, thereby establishing a date the radioactive breakdown began in both elements. This technique has been used to date rock formations found in caves, especially speleothems such as stalagmites and stalactites, some of which may have formed in the recent past, just thousands of years ago.

As shown in the article “Diving Ice Age Mexico” in the May/June 2011 issue of Archaeology magazine, uranium-thorium dating has been used to date rock formations in the numerous limestone caves that pocket the Yucatan Peninsula in Mexico. Many cave dwellers lived in these caves during the Pleistocene, when sea levels were hundreds of feet lower than present times.

20. X-Ray Diffractometry

One of many non-destructive analytical dating methods, x-ray diffractometry, aka x-ray crystallography, is a technique that scatters x-rays over objects and substances, which can determine the arrangement of atoms and molecules in the crystals of both organic and inorganic material, which could include salts, metals, minerals and thin films. This process can reveal information about the chemical composition and physical properties of such matter, including the structure of its DNA, if present.

21. Cementochronology

This technique can be used when the teeth of deceased animals or humans are extant. Assessing the age at death, as well as the season at death of the animal or person, cementochronology (CC) involves the analysis of the dental cementum deposits found attached to the root of a tooth. Similar to the rings of trees, these deposits have rings showing annual growth, which can help scientists date skeletal remains and their contextual aspects. Used by scientists since the 1970s, CC, a form of bioarchaeology, is now used by forensic and physical anthropologists.

Please leave a comment.

© 2011 Kelley Marks


Kelley Marks (author) from Sacramento, California on March 24, 2013:

Hey, Asth, scientists use all of the aforementioned techniques for dating cities, particularly stratigraphy and artifact sequencing. A lot depends on the location of this hypothetical city and its apparent age. Later!

Asth on March 23, 2013:

Ok... I have one question, though. How do they date cities?

fyhubftf on June 10, 2012:


Vanessa 08 on April 08, 2012:

Cool! I didn't know that much before reading this

Kelley Marks (author) from Sacramento, California on November 20, 2011:

Hey, James Walton, nobody has found any artifacts older than 15,000 years in the Americas. If you think you have, then call National Geographic or "60 Minutes." Good luck. Later!

james walton on November 20, 2011:

oh and i almost forgot to mention spear points so big i know indians wouldn't have made them like they were used for the biggest of game that ever roamed im talking like you wont belive till you see my findings7'' long by4.5'' wide by2.5'' thick some weatherd some not! different chipping styles some are hard hammer hit some just big flaked different time periods and makes me feel like america dosnt know any thing of its deeper past! but once again this is no joke i have spent many of hours a day searcking and diging in KEY locations studding the landscape as i go getting a good feel where to find these tools and deep receding ditches or newly receding banks are key to my discovries i find the ocasional tammahawk/ but to my excitement is the odd spear points that pre-date indians and have found many apon many war clubs here and cutting tools from indians very few arrow points!it seems like this spot was liked in time by all decendants

james walton on November 20, 2011:

these questions i have are are seeming point less on computer like i find points/tools in a certain area in virgina that are anywhere from woodland to neanderthal for sure on this!i need feed back! how often do you hear of some one finding artifacts so deep on a bank that the sedament arund the artifact is turning in to rock like granite and the artifact is under so much presure in gets broke due to shifting weight and the edges of it are un scaved like the day it was dropped!some kind of clear quarts with rainbow speck like sheen!no gimmick!!!

Kelley Marks (author) from Sacramento, California on October 01, 2011:

Thanks for the comment, rehman. I wish I could tell you what to do about that artifact you mentioned, but I can't. Your friend needs to ask an archaeologist or perhaps somebody who teaches archaeology or anthropology at the local college or university. Good luck. Later!

rehman on October 01, 2011:

A friend has emailed me image of an artifact claimed to be ancient. He asked me to have it assessed. Wonder if you can guide me on how should i go about it?

Kelley Marks (author) from Sacramento, California on May 04, 2011:

Thanks for the compliments, katiem2. This one was lots of fun to write. Later!

Katie McMurray from Ohio on May 04, 2011:

WOW Kosmo, what cool facts and details about how do Archaeologist date events from the past. Cool, very cool indeed, makes me wanta go back to school. :) Katie

Kelley Marks (author) from Sacramento, California on May 01, 2011:

Thanks for the kind words, Seeker7. I love archaeology as much as I love the earth and its various civilizations. The study of the old is truly ashonishing and enriching. My list of archaeology hubs probably affirms that statement. (I'll have to watch for the show "Time Team." So far I've missed that one.) Later!

Helen Murphy Howell from Fife, Scotland on May 01, 2011:

Wonderful Hub. I didn't realise how much was involved with Archeology until I started watching the TV programme 'Time Team'. It astounded me how they could take a shard of pottery out of the ground and tell it was Roman or Saxon or whatever. I also saw for the first time Dendrochronology, that you mentioned, at work. They took samples from old beams in a house in order to date the oldest part of the building. It was so interesting and your fascinating hub has just intrigued me even more. Many thanks for sharing.

Kelley Marks (author) from Sacramento, California on April 30, 2011:

Realhousewife, I may have seen that program you mention, but I can't recall the dating technique they used. I find all science fascinating. For the most part, it is my religion. Later!

Kelley Marks (author) from Sacramento, California on April 30, 2011:

Thanks, DDS, I'm also a big fan of paleoanthropology, another discipline that uses many of the dating methods I've listed in this hub. Later!

David Sproull from Toronto on April 30, 2011:

Big paleoanthropology fan so voted up!

Kelly Umphenour from St. Louis, MO on April 30, 2011:

Kosmo - this is really interesting. I saw a bit of a documentary and fhey were drilling tube like pipes into the ground (it was frozen) I thought they were using it for dating the earth? Great hub!

Kelley Marks (author) from Sacramento, California on April 30, 2011:

Thanks for the compliment, nelson soares, I really enjoy all aspects of archaeology and definitely had fun writing this hub. Later!

nelson soares from Sunny Algarve on April 30, 2011:

You´ve just answered a question that's been on the back of my mind ever since I was a kid! Excellent Hub

Vote up and awesome!

Thank you for such a complete and well organized article on Archeology!

Related Articles